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Viewing the Galois group of Polynomials as a Permutation Group on its Roots

One of the more important results from group theory is Caley’s theorem, which tells us that
any finite group can be embedded into Sn, for some n. As Galois groups are indeed groups,
we can say the same about Galois groups of polynomials. This itself is a rather dull fact.
The more interesting thing about this is exactly what n needs to be. Let F be a field and
let f ∈ F [x]. Let M be the splitting field of f . If f is a degree n polynomial, then we in fact
have that the Galois group of f (ie. Gal(M/F )) can be viewed as a subgroup of Sn. More
specifically, the Galois group permutes the roots of f .

In order for this to happen, we must describe how the Galois group acts on the roots of f .
In particular, we need to show that given σ ∈ Gal(M/F ), σ maps roots of f to other roots

of f . To see how this happens, let f(x) =
n∑

i=0

aix
i, and let α be a root. Since σ is a field

automorphism (which means addition and multiplication is preserved) fixing elements in F ,

we see that 0 = σ(f(α)) =
n∑

i=0

σ(aiα
i) =

n∑
i=0

aiσ(α)i = f(σ(α)), which tell that σ(α) is also a

root of f . So, we see that indeed, elements of Gal(M/F ) maps roots of f to other roots of
f .

Since we have Gal(M/F ) acting of the roots of f , let us now discuss the orbits of this action.
To begin, let us show when this action is transitive. Suppose f was irreducible in F . Then
we know that given any root α of f , F (α) ∼= F [x]/(f(x)) (sending x̄ 7→ α). In this case, we
see that given roots α, α′, we can define an isomorphism φ : F (α) → F (α′) where φ(a) = a
for every a ∈ F and α 7→ α′. From here, we can extend f to an automorphism f̄ : F̄ → F̄ ,
and since M is normal (ie. stable. This is because roots map to roots), we can restrict f̄ to
M , thus creating an automorphism of M that fixes F and maps α 7→ α′ (this is by definition,
an element of Gal(M/F )). Thus, we see that Gal(M/F ) acts transitively on the roots of f .

But what if f wasn’t irreducible in F? Let f = f1f2 · · · fn, where each fi is irreducible with
degree at least 1 and n > 1. Let us take any of the fi’s. We notice that as before, Gal(M/F )
maps roots of fi to other roots of fi (the argument from above still works). Here, we see that
the action cannot be transitive, because each root α can only map to another root another
root of fi, where fi it the polynomial that has α as a root. We notice that there’s no ‘funny
business’ happening, because if fi and fj has α as a shared root, we see that the fi = fj,
because irrF (α) must divide fi and fj, but fi and fj are irreducible themselves. This tells
us that Gal(M/F ) acts transitively on the roots of f if and only if f is irreducible. That is,
the orbit of a root α of f is all the roots that are roots of the irreducible polynomial of α.

It now makes sense to look at fields between M and F , and how they relate to subgroups of
Gal(M/F ). Let L be an intermediate field between F and M (ie. F ⊂ L ⊂ M). Here, it is
clear that Gal(M/L) ⊂ Gal(M/F ), as automorphisms of M fixing L also fix F . In fact, we
see that as the intermediate field gets bigger, the Galois group of the extension gets smaller.
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That is, if we have F ⊂ K ⊂ L ⊂ M , we have that Gal(M/L) ⊂ Gal(M/K). From here,
we see a relationship between how subfields L relate with their corresponding Galois group
Gal(M/L).

Let us now talk about how Gal(M/L), which is a subgroup of Gal(M/F ), acts on the roots
of f . To do this, we look at f = f1 · · · fn, where the fi’s are irreducible factors of f as a
polynomial of M . As before, we have that given any of the fi’s, elements of Gal(M/L) map
roots of fi to other roots of fi. We can similarly show that the Gal(M/L) acts transitively
on the roots of fi. From this, we see that some of the Gal(M/F )-orbits in the will break up,
according to how the corresponding irreducible factors of f over F factor as polynomials in
L.

But is there any way we can talk about the ‘other’ Galois group - that is, given an inter-
mediate field L, what can we say about Gal(L/F ) in respect to Gal(M/F )? Turns out
there is. In fact, if L is a normal subgroup, we have that Gal(M/L) / Gal(M/F ). Since we
have normality in the group setting, it makes sense to look at the quotient group. We can
actually show that Gal(M/F )/Gal(M/L) ∼= Gal(L/F ). This tells us that given normality
of an intermediate field L between F and M , we can find Gal(L/F ) as a quotient group.

But when exactly do we get a normal intermediate fields between F and M? Let us look at
the case where f = f1 · · · fn, where each fi is irreducible (ie. when f is reducible). Clearly,
the splitting field Li of any of the fi’s gives us an intermediate field. We notice that Li is
in fact normal, because elements of Gal(M/F ) map roots of fi to other roots of fi, which is
all contained in Li. It is easy to see from here that taking product of the Li’s also give us
normal intermediate fields.
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Galois Correspondence in the Finite Separable Case

One of the intricacies of Galois theory is that it ties together group theory and field theory.
In particular, given a field F , when we have a Galois field extension L, we have a inclusion
reversing one-to-one correspondence between subfields of L containing F and subgroups of
Gal(L/F ). This motivates the usage of the priming operation between intermediate fields
of L and F , and subgroups of Gal(L/F ). That is, given F ⊂ K ⊂ L, we define K ′ as the
subgroup of Gal(L/F ) fixing K. Similarly, given H ⊂ Gal(L/F ), we define H ′ to be the
subfield of L fixed by H.

We know that when L is Galois, G′ = F . In this case, we have some nice results, such as
the following:

• Given intermediate fields F ⊂M ⊂ N ⊂ L, we have that [N : M ] = [N ′ : M ′]

• Given subgroups {e} ⊂ J ⊂ H ⊂ Gal(L/F ), we have that [H : J ] = [J ′ : H ′].

However, when L is not Galois, this need not be true. In particular, we have that G′ 6= F
(by definition of Galois). An example of this is when we look at Q( 3

√
2). We see that 3

√
2 is

a root of the irreducible x3 − 2, which means Q( 3
√

2) is a degree 3 extension of Q. However,
we see that in this case, the other roots of x3 − 2 are ζ3

3
√

2 and ζ23
3
√

2, neither of which
are real. Since roots of x3 − 2 must map to other roots by Gal(Q( 3

√
2/Q)), and Q( 3

√
2) is

a subfield of R, while neither ζ3
3
√

2 nor ζ23
3
√

2 are contained in R, we see that any element
of Gal(Q( 3

√
2/Q)) must map 3

√
2 to itself, which means Gal(Q( 3

√
2/Q)) is trivial. In this

case, we see clearly that we do not have the one-to-one inclusion reversing corresponding
lattice structure as we do in the Galois case, as Q( 3

√
2) is a nontrivial extension of Q, while

Gal(Q( 3
√

2/Q)) is trivial.

The example above illustrates the following in the general (non-Galois) case:

• Given intermediate fields F ⊂M ⊂ N ⊂ L, we have that [N : M ] ≥ [N ′ : M ′]

• Given subgroups {e} ⊂ J ⊂ H ⊂ Gal(L/F ), we have that [H : J ] ≥ [J ′ : H ′].

One of the ways we can study Galois correspondence in the non-Galois separable case is to
look at the Galois closure of our given field. That is, given L a finite extension of F , we can
look at F ⊂ L ⊂ M , where M is the Galois closure of L. In this case, we have that M ,
which is Galois over F , is also Galois over L. One of the things we can do here is to look
at how many ways we can embed L into M . The number of ways we can look at how L
embeds into M gives us the σ(L)’s, for σ ∈ Gal(M/L). Here, we see that given σ, we have
that the subgroup of Gal(M/F ) fixing σ(L) is σGal(M/L)σ−1. In fact, we can show the
converse of this too. One of the corollaries of this is that L is a normal (stable) extension if
and only if Gal(M/L), the fixed field of L in M , is normal in Gal(M/F ). In fact, when we
have L being a normal extension of F , living inside the Galois closure M , then we have that
Gal(M/F )/L′ is isomorphic to the automorphism in Gal(L/F ) that extend to M . From
this, we are able to see that Gal(M/F )/Gal(M/L) ∼= Gal(L/F ). However, the case that L
is normal is unnecessary for the case that L is not a Galois extension, because if L is stable,
then we can actually show that L is Galois over F .

By looking at the Galois closure of L, we’re able to see “how much stuff is missing” in
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the Galois group. For example, in our case of Q( 3
√

2), we’re able to observe how missing
roots of an irreducible polynomial can cause the Galois group to “collapse.” In particular,
given L and its Galois closure M , when we view L as a subfield of M , we can look at the
fixed field of Gal(L/F ) in relation with Gal(M/F ) and Gal(L/F ). It makes sense to look
at this, because towards the end of the last paragraph, we see that in the normal setting,
we have Gal(M/F )/Gal(M/L) ∼= Gal(L/F ). In the example of Q( 3

√
2), we see that the

missing roots “takes away” from the structure of the Galois group Gal(Q( 3
√

2)/Q), in that
it ends up fixing everything in Q( 3

√
2). So, we see that the number of isomorphic fields L

has in M (which corresponds to the conjugate subgroups of Gal(M/L) in Gal(M/F )), in
respect to the roots of the irreducible polynomial of the elements adjoined to obtain L, give
us an idea ”how many things are missing,” with more isomorphic fields corresponding to
more things “missing” in the Galois group. More specifically, the things “missing” are the
roots of irreducible polynomials of elements in L, that are absent from L, and in extension,
the automorphisms that would arise if they were present. This is consistent with fact that
normal extensions in the separable setting is give us Galois fields, in a bigger Galois extension,
there is only one conjugate subfield. Indeed, this also gives us intuition in the fact that the
traditional definition of Galois (fixed field is the base field) is equivalent to being normal and
separable, as well as being the splitting field of a separable polynomial.
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